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INTRODUCTION
The classification of disease by char-
acterization of the morphologic fea-
tures of affected tissue is a
conventional approach to establish a
diagnosis. Upon inspection of a tissue
sample under light microscopy, a
pathologist describes the morphologic
findings applying commonly used di-
agnostic terms. The NCI Thesaurus,
which captures terminology in use by
the National Cancer Institute (NCI),
lists over 6000 neoplastic disease con-
cepts with approximately 24 000 pre-
ferred names and synonyms.1 The NCI
Metathesaurus, an even broader sys-
tem that maps synonymy across many
biomedical vocabulary sources, sug-
gests that as many as 7000 concepts
with 42 000 preferred names and sy-
nonyms for neoplastic disorders may
be in use worldwide.2 While there is
no doubt great diversity in the mani-
festation of neoplasms in the human
population, this pool of terminology
likely exceeds the necessary descrip-
tive and explanatory complexity that
might be needed to properly distin-
guish scientifically and clinically dis-
tinct diseases.

There is thus an increasing aware-
ness of the need to consolidate and
standardize disease terminology, and
modernize the basis by which distinct
cancer types are defined. The Interna-
tional Classification of Disease for
Oncology (ICD-O) from World Health

Organization (WHO) is perhaps the
most comprehensive effort to organize
descriptions of cancer into coded
categories.3 The ICD-O organizes
classifications into two major axes:
morphology and topography. The
third edition, ICD-O-3, includes a
substantial update to the classifica-
tion of hematologic malignancies. In
addition to morphological character-
istics, the criteria used to classify the
hematologic disorders include cytoge-
netic abnormalities, immunopheno-
typic profiles, and clinical presenta-
tion. The ICD-O is intended for coded
summarization of disease incidence
reporting rather than for clinical prac-
tice. A volume that gives greater detail
on the histopathologic, immunologic,
and cytogenetic characteristics of each
disease class is also available.4

The inclusion of cytogenetic features
into the WHO classification reflects
the importance of capturing under-
lying molecular phenomenon that are
associated with particular disease
subtypes, in some cases warranting
an entire classification subbranch
(Table 1). At present, cytogenetic aber-
rations are the principal type of genet-
ic observation used in classifying some
subcategories of specific hematologic
malignancies (acute myeloid leukemia
and myelodysplastic syndromes). The
availability of data correlating chro-
mosomal rearrangements and gene
fusion events with specific diseases,
as well as the standardization of how
such translocations are described,
has made it possible to include this
type of genetic information in a
formal classification.

Chromosomal rearrangements and
their associated gene fusions represent
one of several types of genetic ab-
normalities that can contribute to the
etiology of cancer. Aberrations such as
hyperploidy, gene amplification, and
sequence mutations can also be in-
volved or correlated with the establish-
ment or metastasis of malignancy. The
immediate phenotypic consequences
of any of these genomic DNA lesions
can be measured in terms of altered
gene expression patterns. It is there-
fore appropriate to consider how,
along with morphologic, immunophe-
notypic, and cytogenetic characteris-
tics, canonical gene expression
patterns might be used as classifiers
in standardized descriptions of cancer.
Recent gene expression profiling stu-
dies of hematologic and other types of
malignancies illustrate the progress
and challenges in pursuing this end.

Diffuse Large B-cell Lymphoma
(DLBCL)
In the present WHO classification,
DLBCL is not subgrouped according
to any distinguishing molecular char-
acteristics. Patients diagnosed with
DLBCL vary widely in their clinical
courses and outcomes, suggesting there
are important differences in the under-
lying disease etiology and responses to
treatment across this population.5,6

Starting with the sequence and
cDNA library resources available from
the Cancer Genome Anatomy Project,
a team of collaborators at several
institutions developed a so-called lym-
phochip cDNA microarray to probe
molecular profiles of gene expression
in lymphocytic malignancies.7 They
made use of the lymphochip in a
comparative analysis of 96 normal
and malignant lymphocyte samples.8

After unsupervised hierarchical clus-
tering of the resulting data, the
authors qualitatively characterized
several of the clusters as ‘signatures’
and labeled them according to a
biological feature shared by many of
the genes within the cluster. Genes in
the ‘Germinal Center B Cell’ signature
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were chosen to serve as a basis for
further DLBCL subtyping, based on
the view that DLBCL may descend
from different B-cell developmental
stages. Indeed, the signatures from
each of the diseased patient samples
were found to segregate into one of
two classes: one similar to normal
germinal center B cells, the other
similar to activated B cells.

Overall, patients with activated B-
like DLBCL had significantly lower
survival rates than those with germ-
inal B-like DLBCL. This finding sug-
gests that gene expression profiling
can be used to subclassify DLBCL into
at least two diseases. A more recent
lymphochip study with a larger num-
ber of samples confirmed this finding,
and further demonstrated that expres-
sion profiling could be used to develop
a prognostic indicator that is more
accurate than conventional indices.9

However, the results from the analysis
of commercial oligonucleotide array
data from a different cohort of samples
using supervised machine learning
methods did not find correlation be-
tween B-cell developmental stage sig-
nature and clinical outcome.10 The
supervised approach defined clinical
outcome as the basis for classification
at the outset, and identified genes
whose expression signatures provide
high predictive power. The differing
results from these studies stem from
the different array technology, array

design, analytical approach, and pa-
tient cohorts that were involved, and
illustrate the difficulty in interpreting
and comparing microarray-based find-
ings from different sources. Readers are
directed to a recent article by D Slonim
for a thorough treatment of micro-
array analysis approaches, including
the distinction between finding pat-
terns vs finding classifiers.11 Chuaqui
et al12 provide a cogent discussion of
the sources of uncertainty, variation
and error in microarray experimental
design and analysis.

Acute Lymphoblastic Leukemia (ALL)
Cytogenetic and immunophenotyping
analyses have established two broad
categories of ALL.13 B-cell lineage ALL
(B-ALL) can be further subclassified
in part by the chromosomal trans-
locations that result in particular gene
fusions or by hyperploidy. T-cell line-
age ALL (T-ALL) is also correlated with
cytogenetic abnormalities, although
these appear less frequently than in
the B-ALL population.

A relatively broad study probed 327
bone marrow samples with commer-
cial oligonucleotide arrays and found
that seven distinct leukemia subtypes
could be defined through unsuper-
vised hierarchical clustering of the
data.14 One of these subtypes corre-
sponded to T-ALL; five corresponded
B-ALL subtypes previously classified

according to cytogenetic rearrange-
ments or hyperploidy. These results
are a remarkable independent confir-
mation of significance of these classes
as biologically distinct subtypes. The
seventh subtype emerged from a group
of patients who lacked any consistent
chromosomal rearrangement and had
varying degrees of ploidy ranging from
normal to hyperdiploid. In total, 20%
of the cases did not cluster into any of
the seven leukemia subtypes. These
finding suggest that at least one and
perhaps several additional distinct dis-
ease subclasses are prevalent in the
ALL patient population.

Support vector machine analysis of a
training set of ALL gene expression
signatures resulted in the identifica-
tion of representative genes within the
clusters that can be used as predictive
classifiers.14 The number of genes
needed to classify a given subtype
ranged from one to 20. When these
classifiers were used to analyze a test
set of signatures that were not part of
the training set, they yielded accuracy,
sensitivity, and specificity values of
93–100% for nearly all three measure-
ments of each ALL subtype, a remark-
able level of predictive power.

Another expression profiling study
focusing specifically on T-ALL defined
several subtypes that correlated with
known oncogene activation and,
further, identified a newly suspected
oncogene.15 The microarray results
were confirmed with RT-PCR, and, as
with the other studies, demonstrated
that expression signatures could be
used as prognostic indicators.

Other Cancers
Microarray technology has been ap-
plied to several other types of cancer
by scientists attempting to discern
molecular subclasses. A study ana-
lyzing 65 biopsy specimens from 42
breast cancer patients found a variety
of patterns across tumors from differ-
ent patients, making it difficult to
clearly articulate a diagnostic portrait
of cancer subtypes. Nonetheless, the
analysis was able to provide a preli-
minary indication that distinct mole-
cular classes exist, and could perhaps
be better distinguished and character-
ized with larger data sets.16

Table 1 Excerpt of WHO classification of hematopoietic and lymphoid neoplasms*

ICD-O Classification

Acute myeloid leukemias (AMLS)
AMls with recurrent cytogenetic translocations

9896/3 AML with {t(8;21)(q22;q22)}, {AML1(CBF-alpha)/ETO}
9866/3 Acute promyelocytic leukemia {AML with t(15;17)(q22;q11-12} and variants,

{PML/RAR-alpha}
9871/3 AML with abnormal bone marrow eosinophils {inv(16)(p13q22)} or

{t(16;16)(p13;q22)}, {CBFb/MYH11}
9897/3 AML with 11q23 abnormalities {MLL}
9895/3 AML with multilineage dysplasia
9895/3 With prior myelodysplastic syndrome
9895/3 Without prior myelodysplastic syndrome
9920/3 AML and myelodysplastic syndromes, therapy-related
9920/3 Alkylating agent-related
9920/3 Epipodophyllotoxin-related (some may be lymphoid)
9920/3 Other types

*Source: http://training.seer.cancer.gov/module_coding_primary/table_who_class_hemo_1.html.
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Another study, reported results from
an attempt to use microarrays to
classify lung tumors.17 The researchers
collected data from 41 adenocarcino-
mas (ACs), 16 squamous cell carcino-
mas (SCCs), five large cell lung cancers
(LCLCs), and five small cell lung
cancers (SCLCs) as determined by a
pathologist using light microscopy.
Hierarchical cluster analysis showed
strong correlation between particular
clusters and the morphological classi-
fication of the original samples, an
appealing validation of the morphol-
ogy-based classification system in use
for lung cancer. The analysis further
revealed that the AC class could be
divided into three subclasses, but the
clinical significance of the subdivision
was not entirely clear. As with the
breast cancer study, the authors sug-
gest a larger study with more samples
would provide more compelling evi-
dence for clinically relevant lung tu-
mor subclasses based on expression
profile data.

Classification Using Expression
Signatures
The examples of DLBCL and ALL cited
above illustrate the power and poten-
tial for using gene expression profiling
in classifying specific disease subtypes
and predicting clinical outcome. The
case for subclassification of solid tu-
mors is less compelling at present, but
as research data accumulate, an in-
creasing number of small sets of genes
that can be used for unambiguous
disease classification will likely be
identified.

A number of important challenges
remain before such techniques can be
formally adopted. A major issue is the
adolescent state of microarray tech-
nology. Heterogeneity of results across
the various platforms,8,10 and a tre-
mendous diversity of algorithmic ap-
proaches one can take to the data,11

makes it difficult to precisely define
what ‘microarray analysis’ consists of.
Further, microarray designs are chan-
ging as data from the human genome
sequence and associated exon map-
ping studies make their way into the
literature and public databases.18,19

Individual investigators can make
choices about what technological

approaches and array designs to use
for a given study, but the diversity of
possibilities makes it difficult to forge
consensus on what to use for formal
classifications of disease in regular
practice.

There is as yet no standardized way
of describing a particular gene expres-
sion signature derived from a specific
biological source. Nor is there agree-
ment upon what biological attribute of
the signature should be used as a
naming convention. Authors of the
lymphochip DLBCL studies using un-
supervised clustering favored using
similarity to a particular stage of B-cell
development as a basis for naming the
signatures they identified.8 The group
that conducted supervised analysis of
the DLBCL oligonucleotide array data
preferred to describe the specific genes
that were identified as classifiers with-
in a given signature.10 The ALL studies
reported signatures in terms of their
correlation with cytogenetic and gene
fusion events.14,15 Given the variety of
descriptors appearing in the literature,
the need has clearly arisen for a
concise naming convention that is
based upon inherent, robust properties
of expression signatures.

In addition to nomenclature stan-
dardization, it is also useful to consider
what might be the optimal way
to structure a disease taxonomy as
these new data types and descriptors
emerge. In the WHO classification,
histopathology remains the primary
organizing principle, with genetic data
inserted into relevant sub-branches of
the hierarchy. This approach seems
prudent: the taxonomy remains acces-
sible to a broad spectrum of clinical
practitioners, yet adds molecular cri-
teria where appropriate. Histopatholo-
gic characterization and classification
will continue to be a fundamental
component of clinical practice, and
provides the necessary foundation
upon which molecular investigations
are based.20 Indeed, microarray studies
are most appropriately focused on
those areas where morphologic char-
acterization is ambiguous.

And yet as gene expression profiling
technology and nomenclature ma-
tures and robust classification criteria
emerge from the data, we should

explore whether treating the molecu-
lar genetic phenomena as orthogonal
to histopathology might useful. This
approach could prove appealing, espe-
cially if the distinguishing molecular
lesions associated phenotypes are found
to be common across malignancies of
different histologic parentage. Expres-
sion phenotype, cytogenetic state, and
immunophenotype can be correlated,
but are nonetheless distinct properties
of the cells in a sample. It will be chal-
lenging to develop a coherent, acces-
sible disease taxonomy that captures
and correlates, yet distinguishes these
molecular attributes of a given class.

Clinical Trials and Therapy Evaluation
Classification standards can take years
to evolve and achieve consensus.21

This reality should not however pre-
vent researchers from taking advan-
tage of data that is available today to
inform experimental design. It is now
clear that several broadly classified
malignancies are in fact made up of
an assortment of subtypes that can be
identified using expression profiling.22

It is essential to expand the data pool
for these types of analyses, so that
subtypes with lower frequency in the
population can be defined with the
necessary statistical significance.

Grouping patients according to mo-
lecular subtype is also important for
identifying the appropriate target po-
pulation for a given therapy. Different
molecular pathways may be involved
in the different subclasses, and a given
candidate therapeutic agent may have
an effect on one but not another
patient subgroup. This thinking is
already influencing trial designs that
target DLBCL patients with agents that
have an impact on the NF-kB signaling
pathway.23–25

For the above reasons, it should
become common practice to include
expression profiling in clinical trial
protocols in these disease areas. Once
collected, these data should be depos-
ited in central repositories to enable
the community to confirm the con-
clusions of the original publication
and to perform fresh analyses as new
data and methods emerge. Standards
for storing and communicating the
fundamental attributes of microarray
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experimental data are being developed
by the international Microarray Gene
Expression Data (MGED) Society.26

Once deployed, these standards will
make it possible to aggregate data from
different sources into larger sets for
follow-on analysis. The Gene Expres-
sion Data Portal of the NCI is one such
system deploying the MGED stan-
dards, and is focused on aggregating
and redistributing microarray data
from the kinds of cancer studies
described here.27

CONCLUSION
Microarray methodology and expertise
is not yet mature and accessible en-
ough for the average clinical lab to
deploy. Nonetheless in the controlled
research setting, the approach has
defined a number of specific genes
that can be assayed to identify disease
subclass and predict patient outcomes.
It seems imperative to find near-term
solutions to enable these findings to
be operationally disseminated in order
to provide benefit to more patients as
soon as possible. One solution that has
been suggested is to deploy the more
manageable RT-PCR technique in rou-
tine clinical lab settings.28 Others have
shown that immunohistochemistry
can be used to routinely assay for gene
product expression initially found to

be predictive in microarray experi-
ments.10 As these piece of the bench-
to-bedside operations are sorted out
and deployed, we will be better posi-
tioned to strike hard and perhaps even
win future battles in the war on cancer.
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